Vertex AI Studio
What is Vertex AI Studio?
Google Cloud’s unified platform for:
- 🛠️ Building machine learning models
- 🔍 Exploring datasets
- ⚡ Training and deploying models
- 📊 Monitoring model performance
Vertex AI SDK is available for Java, Python, Go, and Node.js.
Before You Start
- Enable billing in your Google Cloud project
- Check service quotas
- Familiarize yourself with the GCP(Google Cloud Platform) console
Setup Steps
Enable required APIs:
gcloud services enable \
aiplatform.googleapis.com \
compute.googleapis.com \
storage.googleapis.com
Install Python SDK
pip install google-cloud-aiplatform
Set authentication:
gcloud auth application-default login
Basic Model Deployment
from google.cloud import aiplatform
aiplatform.init(project="your-project-id", location="us-central1")
# Create an endpoint
endpoint = aiplatform.Endpoint.create(
display_name="my-first-endpoint"
)
# Deploy a pre-trained model
model = aiplatform.Model.upload(
display_name="text-classification-model",
artifact_uri="gs://your-bucket/path/to/model"
)
deployed_model = model.deploy(
machine_type="n1-standard-4",
endpoint=endpoint
)
Making Predictions
Python SDK
response = endpoint.predict(
instances=[
{"content": "This product is amazing!"},
{"content": "Terrible customer service"}
]
)
print(response.predictions)
REST API
POST https://us-central1-aiplatform.googleapis.com/v1/projects/your-project-id/
locations/us-central1/endpoints/your-endpoint-id:predict
Headers:
Authorization: Bearer $(gcloud auth print-access-token)
Content-Type: application/json
Body:
{
"instances": [
{"content": "Sample text for classification"}
]
}
Concepts
Term | Description |
---|---|
Endpoint | Deployed model serving predictions |
Model Registry | Central repository for ML models |
Pipeline | Automated ML workflows |
Best Practices
- 📦 Use Vertex ML Metadata for tracking experiments
- 💾 Store datasets in Cloud Storage buckets
- 📉 Monitor predictions with Vertex Monitoring
- 🔐 Implement IAM roles for security
Troubleshooting
Error | Solution |
---|---|
Permission Denied | Check IAM roles for Vertex AI User |
Quota Exceeded | Request quota increase in GCP console |
Model Deployment Failed | Verify container requirements |